
12 Days
of Git

 Combined
WHAT IS VERSION CONTROL
WHAT IS G IT
INSTALL ING GIT (COMMAND L INE AND GUI OPTIONS)
BASIC GIT COMMANDS TO GET STARTED
INSPECTING A REPOSITORY
FILE OPERATIONS
UNDOING COMMITS & CHANGES
REWRIT ING HISTORY
BRANCHES
MERGING
REBASING
STASHING
CONFLICTS
SUBTREES AND SUBMODULES

@arjun-panwar

SOURCE: https://github.com/weeyin83/14daysofgit

12 Days
of Git

DAY 2
BASIC GIT COMMANDS

@arjun-panwar

Git clone is the command that will help you download an existing
remote repository (like GitHub for example) to your machine.

For example if you head over to any GitHub repository and click on the
green Code button. It will display a URL. Take a copy of that URL.

Git Clone

When we work on a local copy of a repository we will be creating,
modifying, or delete files. When we do that we need to add those

changes to our next commit so they are copied to the remote
repository.

Git add starts to prepare our changes ready to be saved and sent
to the remote repository.

We can add a single file with the command:

Or we can add all the files and changes we made with the
command:

Git add

There comes a point when you are working on your local
repository that you want to save your changes.

Git commit is like setting a checkpoint. You can come back

to this checkpoint at a later point if you need to.

When we issue the git commit command we need to issue a
message to explain the changes we have made. This will help
you or the next person along understand what has changed.

Git commit

There comes a point when you are working on your local
repository that you want to save your changes.

Git commit is like setting a checkpoint. You can come back

to this checkpoint at a later point if you need to.

When we issue the git commit command we need to issue a
message to explain the changes we have made. This will help
you or the next person along understand what has changed.

Git commit

Once we have committed our changes we need to send them
to the remote repository. We can do this using the push

command.
The git push command uploads the commits you have made to

the remote repository. Only committed changes will be
uploaded.

If you wanna push to a particular branch on origin, use:
git push origin <branch-name>

Git push

First of it it gets the updates from the remote repository (git fetch)
Applies the changes to your local copy of the repository (git merge

Git pull is the command you would use to get any updates from the
remote repository.

This command actually does two things in the background. It is a
combination of two other commands, git fetch and git merge

There are times when you will use this command it will throw up

errors or conflicts that you need to resolve but it will pull down any

changes for you.

Git pull

Git init can convert an existing project or folder into a Git
repository.

Most git commands are not available until a repository is initialised,
so typically this is the first command you will run when starting a

new project on your local machine.
When you use git init it create a .git subdirectory in the working

directory. This contains all the necessary Git metadata for the new
repository.

You can use git init in a couple of way.
If you have an existing folder structure with files and code within it

that you want to turn it into a git repository you can issue the
command:

If you haven't created a folder or started creating any code you can
issue the following command to create the folder and initialise it as

a git repository:

Git init

For more visit:
https://www.techielass.com/basic-git-commands-to-get-started/

12 Days
of Git

DAY3
INSPECT A GIT REPOSITORY

@arjun-panwar

There are times when you will want
to check the status of a repository

on your local machine, or when you
want to look back at the history.

Maybe you haven't touched the

repository for a few days and want
to check what state you left it in.

Or maybe you have an issue and

want to understand why and how to
resolve it.

Git status displays the state of the working directory and the staging
area. It will show you any changes which have been staged, which

haven't and any files that Git is not tracking.

Git status won't show you the commit history of the repository though.
It also shows that changes on the local repository that should be

pushed to the remote repository.

Git status

Git log is the command you want to use to see the repositories
commit history.

The space bar to help you scroll down and you can exit it using q.

To display the last three commits for you.

To see what files were altered and how
many lines were added or removed for
each commit

Git log

Git blame is a useful command if you want to understand who
authored a certain change in the history of the repository.

You can't just use git blame across the repository you need to
specify a specific file you want to query.

Git blame

For more visit:
https://www.techielass.com/inspect-a-git-respository/

12 Days
of Git

DAY 4
F ILE OPERATIONS WITH GIT

@arjun-panwar

mv old_file.md new_file.md
git add new_file.md
git rm old_file.md

Git mv is the command that can help you with renaming. We do need to
understand what this command does though.

Git mv is the equivalent to the following three commands:

The mv command is a Unix/Linux command that is used to change the
file name. The git add command is used to stage the new version of the
file. The last part git rm removes the old file from being tracked.

Lets see git mv in action
git mv <old file path> <renamed file path>

Rename a file

Git mv is also the command I can use to move a file from one
location to another within my repository.

git mv <old file path> <new file path>

Moving a file

Git mv -f
With the -f option we can tell Git we are okay to overwriting the

destination with our new file. It's basically forcing any renaming or
move you want to happen. Be cautious with this as you could overwrite

something you need.

Git mv -k
The -k option allows Git to skip over any erroneous conditions resulting

from a git mv call. For example, if you are trying to move a file to
another location and that file already exists the command would error

out. If you don't want to see that error and have Git move onto your
next instruction you should use the -k option.

Git mv -n

The -n option is actually short for --dry-run. It won't actually carry out
the move or rename, it will just show you what would happen if you did

perform the command.

Git mv -v

The last option is the verbose option. Using this option will give you
more information and feedback when you execute the command.

Git mv options

For more visit:
https://git-scm.com/docs/git-mv

12 Days
of Git

DAY 5
UNDOING COMMITS & CHANGES

@arjun-panwar

There are times where you will be made a commit
and realised that you want to undo that for

whatever reason.

What's the best of doing that though? Deleting
the file, you just created, deleting the line you

wrote in a file? What happens when you've made a
ton of changes and don't remember all the bits

that need undone now?

This is where git revert, and git reset can help.

Undoing
commits & changes

Git revert is a command that can remove all the changes a single
commit made to your repository.

Used git reflog to get more details about comit

From git reflog we can get commit number

So if we wanna revert commit 3cf29ce

It's important to remember with this command, you are only reverting
the commit you aren't erasing the history of the commit. So, any

changes can still be referenced within the history of the repository.

Git Revert

With Git revert we just undid changes from a specific
commit. However, there might be occasions where you
want to revert every change that has happened since a

given commit.
This is where the git reset command can be used.

Use git reflog to get the commit number you wish to

reset to
Issue the command git reset number
The repository will not reset your repository to the state
it was at that choosen commit

The steps to use Git reset are:
1.

2.
3.

1.

Again, with the git reset command remember that you are just
reverting to a previous state, you aren't removing the history. It will

still be there to see and refer to.

Git Reset

For more visit:
https://www.techielass.com/undoing-commits-changes/

12 Days
of Git

DAY 6
REWRIT ING GIT HISTORY

@arjun-panwar

There are times when you make a commit but realise you've
written the wrong thing within the commit message. What do

you do?

This is one of the use cases for the --amend option.

It will replace last message

Rewriting History

Change most recent Git commit message

There are times when you complete a commit and then realise
you want to add in one more change or you've forgotten

something. And it would make more sense to add it into that
commit rather than open another one.

This is another use case for the git commit --amend command.

The additional option on the command, --no-edit takes that last
change and puts it into the previous commit, without changing the
message. For anyone else looking at this commit, it will look like it

was done in one commit.

I would caution using this option and only using it on your own
commits, don't confuse others by amending other people's commits

Add extra changes to a commit

Make changes to file 1 and file 2
Add and commit those changes
Realise you've forgotten to add a small change into file 1
Make the additional change
Use the command git commit --amend --no-edit

Your workflow might be:
1.
2.
3.
4.
5.

For more visit:
https://www.techielass.com/rewriting-git-history/

Other ways to rewriting history will be explored in comming days

12 Days
of Git

DAY 7
GIT BRANCHES

@arjun-panwar

Branches are an everyday part of the
process when using Git. Effectively they
are a point to your changes. You might
create a new branch when you want to
work on a new feature, or bug fix and

keep those changes completely separate
until you are ready to release them.

There are a few commands that you can

use to work with branches, let's take a
look at them.

What are Git branches?

If you have a copy of a repository and you want to
make changes then creating a new branch is best

practice.

To create a new branch you can run the
command:

Create a new branch

When you are working within a repository, and you want to
check what branch you are on you can use the following

command:

Its also visible in terminal base line

See what branch you are on

If you have a branch within your local repository that you've
created then you can easily switch to it using the following

command:

If you have cloned a Git repository from a remote location
and it's come with a bunch of branches, then you can use

the following command:

Switch to a local branch

Switch to a branch that's came from a
remote repo

When you create a branch on your local copy of the
repository it won't automatically create within the remote

location. When you come to push your changes to that
remote location you can't just use the git push command
you need to use a slightly different command, either of

these:

Using branch name

Using HEAD
Referencing HEAD saves you from having to type out the exact

name of the branch.

Of course, if your branch already exists in the remote location,
you can just run git push.

Push a branch

So, you've created a branch, and you are ready to merge that
branch into the main one, ready for production or the next step

in your development phrase. How can you do it?
The first thing you need to do is switch to the branch you want to

merge your changes into. In this example I want to merge my
changes from the branch "update-query-structure" into my main

branch.

When you issue this command you may receive merge conflicts,
we will be looking at how to deal with them in coming days.

I now have to push this merge from my local repository to my

remote repository, I do that with the command:

Merge a branch

If you want to delete a branch that has already been merged you
can use the command:

git branch -d branchname

If you want to delete a local branch regardless of whether it has
been merged or not, then the command to use is:

git branch -D branchname

There is a subtle difference, the capital D is really a shortcut for
 --delete --force.

Delete a local branch

For more visit:
https://www.techielass.com/git-branches/

@arjun-panwar

12 Days
of Git

DAY 8
MERGING WITH GIT

Merging is where you take two branches and
combine them. Git will take the commit pointers it
has within the two branches and attempt to find a

common base commit between them and then
unify the two branches.

What is merging?

Merge two Git branches together

You've got a branch and it's ready to merge into your main one.

The first thing you need to do is make sure you are in the
branch you want to merge your changes into.

In this example I have a branch called
"update-query-structure ",

and I want to merge it with my main branch. I first switch over
to my main branch:

Now I am in the branch I want to merge my changes into I type:

I now have to push this merge from my local repository to my
remote repository, I do that with the command:

You can merge more than one branch at a time. There could
be conflicts and issues when doing so, and we'll be looking

in future.

In this example, I have 2 branches with minor changes, and I
want to merge them into my dev branch.

 I issue the command
git merge update-query-structure main

Merge more than one branch

We saw that there is a command called git log that we can use to
find out more information about the current state of the repository.
If we append more options to that command, we can get a graphical

version of our commits.

View the log of merging

Fast Forward
Recursive
Ours
Octopus
Resolve
Subtree

When digging into merging, I found there were
different merge strategies available for different

use cases.

These are the typical merge strategies:

Learn more about them on
https://git-scm.com/docs/merge-strategies

Git merge strategies

For more visit:
https://www.techielass.com/merging-with-git/

12 Days
of Git

DAY 9
GIT REBASING

@arjun-panwar

Edit a previous commit message
Combine multiple commits into one
Delete or revert commits that are no

longer necessary

Rebasing your Git repository rewrites its
history. It can be a harmful command, so

it is one to watch when you use it.
Typically, you would use the git rebase

command for one of the following
reasons:

What is Git Rebasing?

Rebasing rewrites the project's history. It gives
you a much cleaner project history. Rebasing
eliminates the unnecessary merge commits
required by git merge. It gives a much linear

history when you are looking back at your logs.

Why do we need Git rebase?

We have a repository with the main branch and
then a feature branch. We've been working away

on different things on this feature branch and
have several commits. If we look at the graph of
this, it will look something along the lines of this.

Why do we need Git rebase?

We want to bring all the commits and cool new features
we've been creating from our feature branch into our main

branch. But we want to make the history as linear as
possible. So instead of doing a git merge we are going to use

git rebase.

The commands we want to use are:
git checkout main

git rebase featurebranch

The first command makes sure we are in our main branch
and the second command rebases that main branch to

include the commits from feature.
Our git graph log would look like this:

You can see our history has been rebased into the main
branch in a linear way.

If we'd used the git merge command instead this is what our
repository history would look like:

Using the git rebase command gives you a much clearer
history, especially if you have a large team of developers

working on different features and bugs. It can become a real
message if you are only using git merge. The history really

becomes hard to read and understand.
Git rebase isn't always the right option though, as it does

rewrite history. It's important as a team you understand the
right use case for git rebase over git merge and use it

appropriately.

For more visit:
https://www.techielass.com/git-rebasing/

12 Days
of Git

DAY 10
GIT STASHING

@arjun-panwar

The git stash command temporarily
stashes (shelves) any changes you've

made to your working branch so you can
work on something. When you are ready

you can come back to the stashed
changes and re-apply them later.

It's worth nothing that any stash is done
only to your local Git repository copy,

stashes are not transferred to the remote
location.

What is a git stash?

When you issue the git stash command, they are
stored inside a file called stash inside the .git/refs

folder.
You can find all your stashes by using the

command git stash list.
If you drop or clear any stashes it will remove it

from the stash list, but you might still have some
unpruned data within your local Git repository. So

that is something to be mindful of.

Where is git stash saved?

Save changes to branch 1
Run git stash
Check out branch 2
Work on the bug or feature in
branch 2
Commit and push branch 2 changes
to remote
Check out branch 1
Run git stash pop to get your
stashed changes back

1.
2.
3.
4.

5.

6.
7.

How do I use git stash?

The sequence of events for using git stash are as follows:

Now we've looked at what stash does, where it
stores information and the sequence of events

when we are using. Let's take a look at how to use
the commands in detail.

If we have unsaved, uncommitted changes within
a branch we are working on we can just type

 git stash

How to create a stash

This command will store or stash the
uncommitted changes, either staged or unstaged
files, and will overlook untracked or ignored files.
If you wanted to stash untracked files, then you

could use the command:
git stash -u or git stash --include-untracked

Alternatively, if you want to stash untracked files
and ignored files you can use the command:

git stash -a or git stash --all

If there are specific files you want to stash then
you can use the command:

git stash -p or git stash --patch

You can use the command git stash list

List git stashes

From the above list we can see we don't have
much context as to what each of those stashes

are. It's recommended best practice when using
stash to write a save message. Your command

would look like this:

When you list out your stashes you'll now have
more information refer to.

Managing multiple stashes

Git stash apply reapplies the changes
Git stash pop removes the changes from stash
and reapplies them to the working copy

Now you have something stashed away, how do
you retrieve it? There are two commands that you

could use, git stash apply or git stash pop.

Both of the commands reapply the changes that
were stashed. There is a slight difference between

what they do.

Git stash apply allows you to reapply the stashed
changes more than once. You can only use the Git

stash pop command once.

Retrieve git stash changes

To apply a stash and remove it from the stash
list, run:

git stash pop stash@{n}
To apply a stash and keep it in the stash cache,

run:
git stash apply stash@{n}

(note that in some shells you need to quote
"stash@{0}", like zsh, fish and powershell).

git stash apply n
git stash pop n

Apply or Pop a specific stash

You can clear out a specific stash by using the

command:
git stash drop stash@{1}
{1} is stash index number

Or if you want to get rid of all stashes then you
can use the command:

git stash clear

Clear stash

For more visit:
https://www.techielass.com/git-stashing/

12 Days
of Git

DAY 1 1
GIT CONFLICTS

@arjun-panwar

As we've seen Git can handle merges
automatically most of the time. Git
conflicts arises when two separate

branches have made edits to the same line
within a file or even when a file has been

deleted in one branch and changed in
another.

When teams of people are working on

different branches, features, bugs this is
when conflicts are likely to happen. They

are almost part of the collaborating nature
of working with Git and source control.

What are Git conflicts?

Generally, you'll get information back from Git when
there is a merge conflict on what you should do to

resolve it.
Below is an error message when I tried to merge a

branch into my main branch:

I deliberately made changes to the README on both
branches to trigger this error, but you can see the

error message has told me there is an issue with the
README file.

How do you resolve a git merge conflict?

If we switch over to Visual Studio Code and open that
README file we can see more information as to what

is causing the error:

As we can see in here Git has added some syntax for
us, we have "less than" characters and "greater than"

characters. There are 7 of each, and you can use
these to search through your editor quickly if you

have a lot of edits to be made.

The "less than" characters denote the current
branch's edits, and the equal signs denote the end
of the first section.
The second section is where the edits are from
where we attempted to merge. This time it starts
with the equal signs and ends with the "greater
than" signs.

Within this example we have two sections:

It's up to you as the engineer, or merger to decide
what stays and what goes. Within Visual Studio Code
you also have the option to use the "Merge Editor",

which gives you an even greater look at what is
conflicting, and helps you correct it.

If I open the Merge Editor it can help me either accept
the incoming merge, the current one or both merges.
I want to accept the change from the branch, so I put

a tick next to that and accept the merge.

There are other ways you might encounter a
merge conflict, within GitHub for example. And

there is great documentation by GitHub on how to
deal with that.

Dealing with conflicts will always be tricky,

deciding what to keep, what to delete, what to
merge together. You as the merger or owner or

even as a team need to decide what is best.

Good clear pull requests into repositories is
needed, keep your pull requests simple, fix one

bug or add one feature at a time. Give good
explanations of what you are doing, etc That way

if there is a merge conflict whoever is trying to
decide what to do will have the right context and

make their job easier.

For more visit:
https://www.techielass.com/git-conflicts/

12 Days
of Git

DAY 12
SUBTREES AND SUBMODULES

@arjun-panwar

Git submodules allow you incorporate and
track version history of external code.

Sometimes what you are working on, will
depend upon external code. You could just

copy and paste that external code into
your main repository and use it. But there
is the obvious disadvantage here of having
too manually maintain that code and grab

updates when they arise.
You could use something like a package

management system to help maintain the
code, Ruby Gems or NPM. But again, there

are downsides to this approach as well.

What is a git submodule?

Neither of these methods incorporate
methods to track edits and changes of the

external repository.
A Git submodule is a recording within a Git
repository that points to a specific commit

in another external repository.
Submodules are static and only track

specific commits, they don't track git refs
or branches. And don't automatically

update when the external repository is
updated.

When you have a component, you rely on that
isn't updates very often and you want to track it

as a dependency.

When you are delegating a piece to a third party,
and you want to integrate their work at a specific

release point.

When you rely on an external component that
changes to fast, and you want to lock the code to

a specific commit or point in time.

The use cases for Git submodule are:

When should I use a git submodule?

Git subtree lets you nest a repository inside another
as a sub directory.

It's worth mentioning that there is also a

merging strategy called subtree. So be careful

with this term and ensure when talking or

referencing subtree.

What is git subtree?

It's an easier workflow.
There is nothing to learn when using subtree, they
can ignore the fact they are using subtree to
manage dependencies.
Subtree doesn't add metadata files like
submodule does.

There are a lot of articles that say submodules aren't
something you should use, and subtrees are the way

forward. There are some benefits of subtree over
submodule. But subtree has its own disadvantages.

If we look at why people prefer subtree over
submodule:

Git submodule vs git subtree

Contributing back to the original code is more
complicated.
You need to be careful not to mix commits with
your project and the third-party code.

The drawbacks of subtree though are:

Both have their use cases but from the research I

have done the preference seems to be git subtree, as
it overcomes the drawbacks of git submodule.

For more visit:
https://www.techielass.com/subtrees-and-submodules/

@arjun-panwar

Do you want to learn Python , SQL ,
D jango , Machine Learn ing , Deep

Learn ing , and Stat i s t ics in one-on-one
c lasses🤔

Drop me a message on L inkedIn to

d iscuss your requi rements💬

