Piper Alpha Disaster 8 July 1988

Lessons Learned

Piper Alpha: Offshore platform in the North Sea

A massive explosion & fire occurred on July 8, 1988

- * 226 men on board, 62 on night shift, most stayed in LQ,
- Evacuation by helicopter or life boats was not possible,
- 61 survived by climbing down ropes, hoses or by jumping from 210 ft into the sea,
- * 165 died, 109 by inhaling smoke,
 - -14 while attempting to escape &
 - a few died of burns.
 - 135 bodies were recovered

* Total Death = 165+2 = 167

What Happened?

- A condensate pump was taken out of service for maintenance by day shift
- PSV of the pump was taken out of service and blind was installed loosely (bolts not tight)
- Fire water system was on manual for diving operations
- 21:45 two condensate pumps tripped, restarted by night shift without knowing the PSV was removed and blind improperly installed. Leaking occurred after the pump was re-started. A large amount of condensate was released which created an explosive vapor cloud

What Happened? (cont.)

- 22:00 first explosion occurred resulting in oil leaking from separation module and main oil line to shore
- 22:20 second major explosion due to rupture of one of the incoming pipeline risers
- On 22:50 & 23:20 the third and fourth explosion occurred as a result of the failure of the other two pipeline risers.
- A few hours later, only a few pieces of steel structure above the sea surface were the only remains of the Piper Alpha platform.
- 165 lives were lost.

Findings

- Failure of Permit to Work System
- No formal hand-over from Day Shift to Night Shift
- Non compliance to Company procedures
- Company management was easily satisfied with the safety system (lack of control)
- No proper training
- Safety policy and procedures were in place but not in practiced

Findings (cont.)

- Emergency induction was not provided or inconsistently given
- No drills or exercises were conducted to test emergency preparedness
- No emergency response training was provided
- Failure to conduct Risk Assessments
- Inadequate guidance or means to assess effectiveness of Safety Management System
- Poor Management System

Recommendations (Cullen Report)

- Safety Case
- Auditing of Operators' Management of Safety
- Independent Assessment and Surveys of Offshore Installations
- Legislation General
- Establish Regulatory Body
- Safety Committee and Safety Representatives
- Permit to Work and Incident Reporting
- Control of Process
- Hydrocarbon Inventories, Risers and Pipelines

Recommendations (Cont.)

- Fire & Gas Detection and Emergency Shutdown
- Fire & Explosion Protection
- Accomadation, TSR, Escape Routes and Safe Embarkation Points
- Emergency Centers and Systems
- Pipeline Emergency Procedures
- Evacuation, Escape and Rescue General
- Helicopters

Recommendations (Cont.)

- TEMPSC (Totally Enclosed Motor Propelled Survival Craft)
- Means of Escape to the Sea
- Personal Survival and Escape Equipment (Smoke Hoods)
- Stand-by Vessels
- Command in Emergencies (Organization)
- Drills, Exercises, Mustering and Evacuation
- Emergency Management Training for OIM's
- Emergency Training for Control Room Operators and Crew

Detailed Recommendations

Safety Case

 Operators of fixed and mobile installations, both planned and existing, to submit a formal safety assessment of hazards in design and operations

The <u>Safety Case</u> should include:

- 1) Adequate Safety Management System
- Potential major hazards and risks must be identified, and appropriate controls provided through Quantitative Risk Assessment (QRA)
- Provision to be made for a Temporary Safe Refuge (TSR) or Safe Haven, including means of safe and full evacuation, escape and rescue

Auditing of the Operator's Management of Safety

- The Operator is responsible for auditing compliance with own Safety Management System (SMS), including Operations, Engineering, Management etc.
- Regulatory agency should review Operator's SMS audit program and results on a selective basis at least annually.
- The agency should conduct its own audits to verify an Operator's effectiveness in conducting objective audits, and regular site inspections to verify the effectiveness of the SMS itself.

Independent Assessment & Surveys of Installations

 Third party audits by Certifying Authority must be conducted and "Certificate of Fitness" issued to ensure safety of offshore installations

Safety Committee and Safety Representatives

- Management, in particularly first line supervisors, should ensure that the entire workforce (employees and contractors) are actively involved in day-to-day safety.
- Safe Operating Procedures are needed, they are to be reviewed, revised to ensure compliance.
- Offshore employees must be part of the review team.
- Elected Safety Representatives to be trained, have authority to effectively conduct relevant safety activities.

Permit To Work

- PTW is part of the Operator's management system
- PTW system must be improved and personnel must be adequately trained.
- PTW and required Mechanical/Electrical Isolations should remain in force until work is completed.
- A mechanical isolation procedure is required for physical "lock-out" and "tag-out" of isolation valves.
- Improve shift handover and control of suspended PTW.
- Physical locking of valves will slow down work, and increased offshore operator headcount may be required.

Incident Reporting

 Regulatory Authority should maintain a data base of hydrocarbon leaks, spills and ignitions in the oil industry

Control of Process

- Control Room of Piper Alpha was principally a monitoring station with equipment operation being handled within individual plant modules.
- As a result of the incident, new Control Rooms are more centralized and manned 24 hours.
- Key process variables as determined by Safety Case are to be monitored and controllable from the C/R.
- Control Room operators to be trained and qualified for their duties.
- Control Room operator must be capable of handling emergencies.

Hydrocarbon Inventory, Risers and Pipelines

- Pipeline SDV must be installed as near sea level as practicable
- SSIVs (Sub Sea Isolation Valves) are determined by Safety Case for risers affecting integrity of the accommodation
- Minimization of hydrocarbon inventories during emergency situation
- Minimize pipeline connections to platforms
- Passive Fire Protection of risers

Fire Detection and Emergency Shutdown

- Arrangement for activation of Emergency Shutdown Valve (ESDV) and Sub Sea Isolation Valve (SSIV's)
- Studies to be done to determine the vulnerability of ESDV's to severe accident conditions and to enhance their ability to survive such conditions
- Operator to submit fire risk analysis to regulatory body
- The ability of Fire Water Deluge System, including Fire Pump, to survive severe accident conditions should be a feature of the Safety Case

Accommodation, TSR, Escape Routes and Embarkation Points

- TSR to be provided on each installation, specific proposals with regard to the provision of fire protection, breathable atmosphere, prevention of smoke ingress
- Marking and protection of escape routes to embarking point, illuminant tape
- Smoke Hazard, portable smoke hoods must be provided

Emergency System

Standardization of lights and alarms
 (Flashing Light Beacons, Gaitronic Systems)

Evacuation and Escape

- Evacuation of non essential personnel
- Helicopter is the most convenient way of evacuation
- TEMPS
- Secondary evacuation system in the event that evacuation by helicopter or life boat is not possible, i.e. ladders, steps, ropes, nets etc. are to be considered

Helicopters

 Establish communication plan for contacting helicopters from other operators or government authorities to assist in an evacuation

Totally Enclosed Motor-Propelled Survival Craft (TEMPS)

- 100 % capacity for personnel on board
- Free fall life boats to be installed if appropriate

Stand-by Vessels (Boats)

 Stand-by boat capable of accommodating all Personnel On Board - POB within 5 miles of the installation

 Vessel to be capable of SAR (Search & Rescue) and fire fighting

Emergency Command

- OIM is Commander in emergency event
- Designated alternate in case OIM cannot carry out this task
- Evaluate OIM and alternate competency level
- OIM and alternate to be properly trained and certified for Emergency Commander

Drills and Exercises

 Exercises covering all credible accident scenarios are to be held in accordance with UKOOA Guidelines

Training

- Personnel who work offshore are required to attend
 5-day Basic Emergency Safety Training
- No one is allowed to work offshore without valid certificate